Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

Development of a Vehicle Road Load Model for ECU Broadcast Power Verification in On-Road Emissions Testing

2006-10-16
2006-01-3392
The 1998 Consent Decrees between the United States Government and the settling heavy-duty diesel engine manufacturers require in-use emissions testing from post 2000 model year engines. The emissions gathered from these engines must be reported on a brake-specific mass basis. To report brake-specific mass emissions, three primary parameters must be measured. These are the concentration of each emission constituent, the exhaust mass flow rate, and the engine power output. The measurement of the concentration level and exhaust mass flow rate can be (and are generally) measured directly with instrumentation installed in the exhaust transfer tube. However, engine power cannot be measured directly for in-use emissions testing due to the direct coupling of the engine output shaft to the vehicle's transmission. Engine power can be inferred from the electronic control unit (ECU) broadcast of engine speed and engine torque.
Technical Paper

Influences of Real-World Conditions on In-Use Emission from Heavy-Duty Diesel Engines

2006-10-16
2006-01-3393
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Respirable Particulate Genotoxicant Distribution in Diesel Exhaust and Mine Atmospheres

1992-09-01
921752
Results of a research effort directed towards identifying and measuring the genotoxic properties of respirable particulate matter involved in mining exposures, especially those which may synergistically affect genotoxic hazard, are presented. Particulate matter emissions from a direct injection diesel engine have been sampled and assayed to determine the genotoxic potential as a function of engine operating conditions. Diesel exhaust from a Caterpillar 3304 diesel engine, representative of the ones found in underground mines, rated 100 hp at 2200 rpm is diluted in a multi-tube mini-dilution tunnel and the particulate matter is collected on 70 mm fluorocarbon coated glass fiber filters as well as on 8″ x 10″ hi-volume filters. A six mode steady state duty cycle was used to relate engine operating conditions to the genotoxic potential.
Technical Paper

Examination of a Heavy Heavy-Duty Diesel Truck Chassis Dynamometer Schedule

2004-10-25
2004-01-2904
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
Technical Paper

Multidimensional Correlation Study Using Linear Regression of PM and NOX for Heavy Duty Diesel Vehicles

2005-04-11
2005-01-1618
When heavy-duty truck emissions rates are expressed in distance-specific units (such as g/mile), average speed and the degree of transient behavior of the vehicle activity can affect the emissions rate. Previous one-dimensional studies have shown some correlation of distance-specific emissions rates between cycles. This paper reviews emissions data sets from the 5-mode CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Schedule, the Heavy Duty Urban Dynamometer Driving Schedule (UDDS) and an inspection and maintenance cycle, known as the AC5080. A heavy-duty chassis dynamometer was used for emissions characterization along with a full-scale dilution tunnel. The vehicle test weights were simulated at 56,000 lbs. Two-dimensional correlations were used to predict the emissions rate on one mode or cycle from the rates of two other modes or cycles.
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

NOX Decomposition in Natural Gas, Diesel and Gasoline Engines for Selective NOX Recirculation

2005-05-11
2005-01-2144
Selective NOX Recirculation (SNR) involves three main steps in NOX reduction. The first step adsorbs NOX from the exhaust stream, followed by periodic desorption from the aftertreatment medium. The final step passes the desorbed NOX gas into the intake air stream and feeds into the engine. A percentage of the NOX is expected to be decomposed during the combustion process. The motivation for this research was to clarify the reduction of NOX from large stationary engines. The objective of this paper is to report the NOX decomposition phenomenon during the combustion process from three test engines. The results will be used to develop an optimal system for the conversion of NOX with a NOX adsorbtion system. A 1993 Cummins L10G natural gas engine, a 1992 Detroit Diesel series 60 engine and a 13hp Honda gasoline engine were used in the experiments. Commercially available nitric oxide (NO) was injected into the engine intake to mimic the NOX stream from the desorption process.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Assessment of NOx Destruction in Diesel Engines by Injecting NO in the Intake Manifold

2005-04-11
2005-01-0370
Emissions from diesel engines, particularly NOx and TPM emissions are harmful to the environment. Reduction of NOx emissions from diesel engines is of increasing concern. In 1998, a novel approach called Selective NOx Recirculation (SNR) was used to reduce NOx emissions in diesel engines. The SNR concept relies on two major parts, one to collect the NOx emissions from the exhaust by an adsorber, and another to decompose NOx using the in-cylinder combustion process by injecting the collected NOx emissions into the intake manifold at an elevated concentration. This paper deals with the destruction rates during the combustion process. A 1992 DDC series 60, 350 hp, 12.7 liter engine was connected to a 500 hp DC dynamometer. A full-scale dilution tunnel and analyzers capable of measuring continuous NOx, CO2, CO, HC, and PM in the exhaust were used.
Technical Paper

Nitric Oxide Conversion in a Spark Ignited Natural Gas Engine

2005-04-11
2005-01-0234
Understanding the nitric oxide (NO) conversion process plays a major role in optimizing the Selective NOX Recirculation (SNR) technique. SNR has been proven in gasoline and diesel engines, with up to 90% NOX conversion rates being achieved. This technique involves adsorbing NOX from an exhaust stream, then selectively desorbing the NOX into a concentrated NOX stream, which is fed back into the engine's intake, thereby converting a percentage of the concentrated NOX stream into harmless gases. The emphasis of this paper is on the unique chemical kinetic modeling problem that occurs with high concentrations of NOX in the intake air of a spark ignited natural gas engine with SNR. CHEMKIN, a chemical kinetic solver software package, was used to perform the reaction modeling. A closed homogeneous batch reactor model was used to model the fraction of NOX versus time for varying initial conditions and constants.
Technical Paper

Experimental Investigation of the Heat Release Rate in a Sinusoidal Spark Ignition Engine

1989-02-01
890778
Compression and power stroke cycles for a 4 stroke cycle spark ignition engine modified by extending the connecting rod to simulate purely sinusoidal piston motion are analyzed over a range of operating speeds and are compared with those of a similar conventional engine. Heat release rate is estimated for both engines using a simple Wiebe function with the functional parameters found via a simplex curve fitting method used in conjunction with experimental pressure curves. It is shown that the functional parameters which represent the combustion and the duration of fuel burn are slightly larger over the range of operation in the sinusoidal engine while the shape factor remains largely the same. However, the pressure-crank angle curves are sufficiently similar such that conventional slider-crank curves can be used to model sinusoidal engines, which was the motivation behind this research.
Technical Paper

Potential Applications of the Stiller-Smith Mechanism in internal Combustion Engine Designs

1987-11-08
871225
With few exceptions most internal combustion engines use a slider-crank mechanism to convert reciprocating piston motion into a usable rotational output. One such exception is the Stiller-Smith Mechanism which utilizes a kinematic inversion of a Scotch yoke called an elliptic trammel. The device uses rigid connecting rods and a floating/eccentric gear train for motion conversion and force transmission. The mechanism exhibits advantages over the slider-crank for application in internal combustion engines in areas such as balancing, size, thermal efficiency, and low heat rejection. An overview of potential advantages of an engine utilizing the Stiller-Smith Mechanism is presented.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

Demonstration of Caterpillar C10 Dual Fuel Natural Gas Engines in Commuter Buses

2000-03-06
2000-01-1386
Optimized 1997 model year Caterpillar C10 dual-fuel natural gas engines certified to the California Air Resources Board's Alternative Low NOx 2.5 gram/brake horsepower-hour emission standard were demonstrated in three commuter buses over a 12-month period, in Santa Barbara, California. The project evaluated the retrofit costs and process, performance, reliability, fuel economy, operating costs, and emissions of the three C-10 dual-fuel natural gas engines compared to a standard C-10 diesel engine. Chassis dynamometer tests using the U.S. EPA Urban Dynamometer Drive Schedule, the Central Business District (West Virginia University version) and the 55-mph Steady State cycles were conducted to characterize in-use emissions of the dual-fuel engines for the commuter bus application. During 94,000 combined service miles, performance, reliability and durability of the dual fuel buses were similar to the diesel control.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
X